Your retail company wants to predict customer churn using historical purchase data stored in BigQuery. The dataset includes customer demographics, purchase history, and a label indicating whether the customer churned or not. You want to build a machine learning model to identify customers at risk of churning. You need to create and train a logistic regression model for predicting customer churn, using the customer_data table with the churned column as the target label. Which BigQuery ML query should you use?
A)
B)
C)
D)
You created a customer support application that sends several forms of data to Google Cloud. Your application is sending:
1. Audio files from phone interactions with support agents that will be accessed during trainings.
2. CSV files of users’ personally identifiable information (Pll) that will be analyzed with SQL.
3. A large volume of small document files that will power other applications.
You need to select the appropriate tool for each data type given the required use case, while following Google-recommended practices. Which should you choose?
Your organization uses Dataflow pipelines to process real-time financial transactions. You discover that one of your Dataflow jobs has failed. You need to troubleshoot the issue as quickly as possible. What should you do?
You work for an online retail company. Your company collects customer purchase data in CSV files and pushes them to Cloud Storage every 10 minutes. The data needs to be transformed and loaded into BigQuery for analysis. The transformation involves cleaning the data, removing duplicates, and enriching it with product information from a separate table in BigQuery. You need to implement a low-overhead solution that initiates data processing as soon as the files are loaded into Cloud Storage. What should you do?
You work for a home insurance company. You are frequently asked to create and save risk reports with charts for specific areas using a publicly available storm event dataset. You want to be able to quickly create and re-run risk reports when new data becomes available. What should you do?
You want to process and load a daily sales CSV file stored in Cloud Storage into BigQuery for downstream reporting. You need to quickly build a scalable data pipeline that transforms the data while providing insights into data quality issues. What should you do?
You are using your own data to demonstrate the capabilities of BigQuery to your organization’s leadership team. You need to perform a one- time load of the files stored on your local machine into BigQuery using as little effort as possible. What should you do?
You work for a healthcare company that has a large on-premises data system containing patient records with personally identifiable information (PII) such as names, addresses, and medical diagnoses. You need a standardized managed solution that de-identifies PII across all your data feeds prior to ingestion to Google Cloud. What should you do?
You are predicting customer churn for a subscription-based service. You have a 50 PB historical customer dataset in BigQuery that includes demographics, subscription information, and engagement metrics. You want to build a churn prediction model with minimal overhead. You want to follow the Google-recommended approach. What should you do?
Your team wants to create a monthly report to analyze inventory data that is updated daily. You need to aggregate the inventory counts by using only the most recent month of data, and save the results to be used in a Looker Studio dashboard. What should you do?
You need to create a new data pipeline. You want a serverless solution that meets the following requirements:
• Data is streamed from Pub/Sub and is processed in real-time.
• Data is transformed before being stored.
• Data is stored in a location that will allow it to be analyzed with SQL using Looker.
Which Google Cloud services should you recommend for the pipeline?
You are a database administrator managing sales transaction data by region stored in a BigQuery table. You need to ensure that each sales representative can only see the transactions in their region. What should you do?
You used BigQuery ML to build a customer purchase propensity model six months ago. You want to compare the current serving data with the historical serving data to determine whether you need to retrain the model. What should you do?
You work for a financial organization that stores transaction data in BigQuery. Your organization has a regulatory requirement to retain data for a minimum of seven years for auditing purposes. You need to ensure that the data is retained for seven years using an efficient and cost-optimized approach. What should you do?
Your organization uses scheduled queries to perform transformations on data stored in BigQuery. You discover that one of your scheduled queries has failed. You need to troubleshoot the issue as quickly as possible. What should you do?
Your organization needs to implement near real-time analytics for thousands of events arriving each second in Pub/Sub. The incoming messages require transformations. You need to configure a pipeline that processes, transforms, and loads the data into BigQuery while minimizing development time. What should you do?
You are constructing a data pipeline to process sensitive customer data stored in a Cloud Storage bucket. You need to ensure that this data remains accessible, even in the event of a single-zone outage. What should you do?
You are working with a large dataset of customer reviews stored in Cloud Storage. The dataset contains several inconsistencies, such as missing values, incorrect data types, and duplicate entries. You need to clean the data to ensure that it is accurate and consistent before using it for analysis. What should you do?