Winter Special Sale Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: 713PS592

Associate-Data-Practitioner Google Cloud Associate Data Practitioner ( ADP Exam ) Questions and Answers

Questions 4

Your retail company wants to predict customer churn using historical purchase data stored in BigQuery. The dataset includes customer demographics, purchase history, and a label indicating whether the customer churned or not. You want to build a machine learning model to identify customers at risk of churning. You need to create and train a logistic regression model for predicting customer churn, using the customer_data table with the churned column as the target label. Which BigQuery ML query should you use?

A)

Associate-Data-Practitioner Question 4

B)

Associate-Data-Practitioner Question 4

C)

Associate-Data-Practitioner Question 4

D)

Associate-Data-Practitioner Question 4

Options:

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Buy Now
Questions 5

You created a customer support application that sends several forms of data to Google Cloud. Your application is sending:

1. Audio files from phone interactions with support agents that will be accessed during trainings.

2. CSV files of users’ personally identifiable information (Pll) that will be analyzed with SQL.

3. A large volume of small document files that will power other applications.

You need to select the appropriate tool for each data type given the required use case, while following Google-recommended practices. Which should you choose?

Options:

A.

1. Cloud Storage

2. CloudSQL for PostgreSQL

3. Bigtable

B.

1. Filestore

2. Cloud SQL for PostgreSQL

3. Datastore

C.

1. Cloud Storage

2. BigQuery

3. Firestore

D.

1. Filestore

2. Bigtable

3. BigQuery

Buy Now
Questions 6

Your organization uses Dataflow pipelines to process real-time financial transactions. You discover that one of your Dataflow jobs has failed. You need to troubleshoot the issue as quickly as possible. What should you do?

Options:

A.

Set up a Cloud Monitoring dashboard to track key Dataflow metrics, such as data throughput, error rates, and resource utilization.

B.

Create a custom script to periodically poll the Dataflow API for job status updates, and send email alerts if any errors are identified.

C.

Navigate to the Dataflow Jobs page in the Google Cloud console. Use the job logs and worker logs to identify the error.

D.

Use the gcloud CLI tool to retrieve job metrics and logs, and analyze them for errors and performance bottlenecks.

Buy Now
Questions 7

You work for an online retail company. Your company collects customer purchase data in CSV files and pushes them to Cloud Storage every 10 minutes. The data needs to be transformed and loaded into BigQuery for analysis. The transformation involves cleaning the data, removing duplicates, and enriching it with product information from a separate table in BigQuery. You need to implement a low-overhead solution that initiates data processing as soon as the files are loaded into Cloud Storage. What should you do?

Options:

A.

Use Cloud Composer sensors to detect files loading in Cloud Storage. Create a Dataproc cluster, and use a Composer task to execute a job on the cluster to process and load the data into BigQuery.

B.

Schedule a direct acyclic graph (DAG) in Cloud Composer to run hourly to batch load the data from Cloud Storage to BigQuery, and process the data in BigQuery using SQL.

C.

Use Dataflow to implement a streaming pipeline using anOBJECT_FINALIZEnotification from Pub/Sub to read the data from Cloud Storage, perform the transformations, and write the data to BigQuery.

D.

Create a Cloud Data Fusion job to process and load the data from Cloud Storage into BigQuery. Create anOBJECT_FINALIZE notification in Pub/Sub, and trigger a Cloud Run function to start the Cloud Data Fusion job as soon as new files are loaded.

Buy Now
Questions 8

You work for a home insurance company. You are frequently asked to create and save risk reports with charts for specific areas using a publicly available storm event dataset. You want to be able to quickly create and re-run risk reports when new data becomes available. What should you do?

Options:

A.

Export the storm event dataset as a CSV file. Import the file to Google Sheets, and use cell data in the worksheets to create charts.

B.

Copy the storm event dataset into your BigQuery project. Use BigQuery Studio to query and visualize the data in Looker Studio.

C.

Reference and query the storm event dataset using SQL in BigQuery Studio. Export the results to Google Sheets, and use cell data in the worksheets to create charts.

D.

Reference and query the storm event dataset using SQL in a Colab Enterprise notebook. Display the table results and document with Markdown, and use Matplotlib to create charts.

Buy Now
Questions 9

You want to process and load a daily sales CSV file stored in Cloud Storage into BigQuery for downstream reporting. You need to quickly build a scalable data pipeline that transforms the data while providing insights into data quality issues. What should you do?

Options:

A.

Create a batch pipeline in Cloud Data Fusion by using a Cloud Storage source and a BigQuery sink.

B.

Load the CSV file as a table in BigQuery, and use scheduled queries to run SQL transformation scripts.

C.

Load the CSV file as a table in BigQuery. Create a batch pipeline in Cloud Data Fusion by using a BigQuery source and sink.

D.

Create a batch pipeline in Dataflow by using the Cloud Storage CSV file to BigQuery batch template.

Buy Now
Questions 10

You are using your own data to demonstrate the capabilities of BigQuery to your organization’s leadership team. You need to perform a one- time load of the files stored on your local machine into BigQuery using as little effort as possible. What should you do?

Options:

A.

Write and execute a Python script using the BigQuery Storage Write API library.

B.

Create a Dataproc cluster, copy the files to Cloud Storage, and write an Apache Spark job using the spark-bigquery-connector.

C.

Execute the bq load command on your local machine.

D.

Create a Dataflow job using the Apache Beam FileIO and BigQueryIO connectors with a local runner.

Buy Now
Questions 11

You work for a healthcare company that has a large on-premises data system containing patient records with personally identifiable information (PII) such as names, addresses, and medical diagnoses. You need a standardized managed solution that de-identifies PII across all your data feeds prior to ingestion to Google Cloud. What should you do?

Options:

A.

Use Cloud Run functions to create a serverless data cleaning pipeline. Store the cleaned data in BigQuery.

B.

Use Cloud Data Fusion to transform the data. Store the cleaned data in BigQuery.

C.

Load the data into BigQuery, and inspect the data by using SQL queries. Use Dataflow to transform the data and remove any errors.

D.

Use Apache Beam to read the data and perform the necessary cleaning and transformation operations. Store the cleaned data in BigQuery.

Buy Now
Questions 12

You are predicting customer churn for a subscription-based service. You have a 50 PB historical customer dataset in BigQuery that includes demographics, subscription information, and engagement metrics. You want to build a churn prediction model with minimal overhead. You want to follow the Google-recommended approach. What should you do?

Options:

A.

Export the data from BigQuery to a local machine. Use scikit-learn in a Jupyter notebook to build the churn prediction model.

B.

Use Dataproc to create a Spark cluster. Use the Spark MLlib within the cluster to build the churn prediction model.

C.

Create a Looker dashboard that is connected to BigQuery. Use LookML to predict churn.

D.

Use the BigQuery Python client library in a Jupyter notebook to query and preprocess the data in BigQuery. Use the CREATE MODEL statement in BigQueryML to train the churn prediction model.

Buy Now
Questions 13

Your team wants to create a monthly report to analyze inventory data that is updated daily. You need to aggregate the inventory counts by using only the most recent month of data, and save the results to be used in a Looker Studio dashboard. What should you do?

Options:

A.

Create a materialized view in BigQuery that uses the SUM( ) function and the DATE_SUB( ) function.

B.

Create a saved query in the BigQuery console that uses the SUM( ) function and the DATE_SUB( ) function. Re-run the saved query every month, and save the results to a BigQuery table.

C.

Create a BigQuery table that uses the SUM( ) function and the _PARTITIONDATE filter.

D.

Create a BigQuery table that uses the SUM( ) function and the DATE_DIFF( ) function.

Buy Now
Questions 14

You need to create a new data pipeline. You want a serverless solution that meets the following requirements:

• Data is streamed from Pub/Sub and is processed in real-time.

• Data is transformed before being stored.

• Data is stored in a location that will allow it to be analyzed with SQL using Looker.

Associate-Data-Practitioner Question 14

Which Google Cloud services should you recommend for the pipeline?

Options:

A.

1. Dataproc Serverless

2. Bigtable

B.

1. Cloud Composer

2. Cloud SQL for MySQL

C.

1. BigQuery

2. Analytics Hub

D.

1. Dataflow

2. BigQuery

Buy Now
Questions 15

You are a database administrator managing sales transaction data by region stored in a BigQuery table. You need to ensure that each sales representative can only see the transactions in their region. What should you do?

Options:

A.

Add a policy tagin BigQuery.

B.

Create a row-level access policy.

C.

Create a data masking rule.

D.

Grant the appropriate 1AM permissions on the dataset.

Buy Now
Questions 16

You used BigQuery ML to build a customer purchase propensity model six months ago. You want to compare the current serving data with the historical serving data to determine whether you need to retrain the model. What should you do?

Options:

A.

Compare the two different models.

B.

Evaluate the data skewness.

C.

Evaluate data drift.

D.

Compare the confusion matrix.

Buy Now
Questions 17

You work for a financial organization that stores transaction data in BigQuery. Your organization has a regulatory requirement to retain data for a minimum of seven years for auditing purposes. You need to ensure that the data is retained for seven years using an efficient and cost-optimized approach. What should you do?

Options:

A.

Create a partition by transaction date, and set the partition expiration policy to seven years.

B.

Set the table-level retention policy in BigQuery to seven years.

C.

Set the dataset-level retention policy in BigQuery to seven years.

D.

Export the BigQuery tables to Cloud Storage daily, and enforce a lifecycle management policy that has a seven-year retention rule.

Buy Now
Questions 18

Your organization uses scheduled queries to perform transformations on data stored in BigQuery. You discover that one of your scheduled queries has failed. You need to troubleshoot the issue as quickly as possible. What should you do?

Options:

A.

Navigate to the Logs Explorer page in Cloud Logging. Use filters to find the failed job, and analyze the error details.

B.

Set up a log sink using the gcloud CLI to export BigQuery audit logs to BigQuery. Query those logs to identify the error associated with the failed job ID.

C.

Request access from your admin to the BigQuery information_schema. Query the jobs view with the failed job ID, and analyze error details.

D.

Navigate to the Scheduled queries page in the Google Cloud console. Select the failed job, and analyze the error details.

Buy Now
Questions 19

Your organization needs to implement near real-time analytics for thousands of events arriving each second in Pub/Sub. The incoming messages require transformations. You need to configure a pipeline that processes, transforms, and loads the data into BigQuery while minimizing development time. What should you do?

Options:

A.

Use a Google-provided Dataflow template to process the Pub/Sub messages, perform transformations, and write the results to BigQuery.

B.

Create a Cloud Data Fusion instance and configure Pub/Sub as a source. Use Data Fusion to process the Pub/Sub messages, perform transformations, and write the results to BigQuery.

C.

Load the data from Pub/Sub into Cloud Storage using a Cloud Storage subscription. Create a Dataproc cluster, use PySpark to perform transformations in Cloud Storage, and write the results to BigQuery.

D.

Use Cloud Run functions to process the Pub/Sub messages, perform transformations, and write the results to BigQuery.

Buy Now
Questions 20

You are constructing a data pipeline to process sensitive customer data stored in a Cloud Storage bucket. You need to ensure that this data remains accessible, even in the event of a single-zone outage. What should you do?

Options:

A.

Set up a Cloud CDN in front of the bucket.

B.

Enable Object Versioning on the bucket.

C.

Store the data in a multi-region bucket.

D.

Store the data in Nearline storaqe.

Buy Now
Questions 21

You are working with a large dataset of customer reviews stored in Cloud Storage. The dataset contains several inconsistencies, such as missing values, incorrect data types, and duplicate entries. You need to clean the data to ensure that it is accurate and consistent before using it for analysis. What should you do?

Options:

A.

Use the PythonOperator in Cloud Composer to clean the data and load it into BigQuery. Use SQL for analysis.

B.

Use BigQuery to batch load the data into BigQuery. Use SQL for cleaning and analysis.

C.

Use Storage Transfer Service to move the data to a different Cloud Storage bucket. Use event triggers to invoke Cloud Run functions to load the data into BigQuery. Use SQL for analysis.

D.

Use Cloud Run functions to clean the data and load it into BigQuery. Use SQL for analysis.

Buy Now
Exam Name: Google Cloud Associate Data Practitioner ( ADP Exam )
Last Update: Jan 20, 2025
Questions: 72

PDF + Testing Engine

$66  $164.99

Testing Engine

$50  $124.99
buy now Associate-Data-Practitioner testing engine

PDF (Q&A)

$42  $104.99
buy now Associate-Data-Practitioner pdf